

US005796363A

United States Patent [19]

Mast

[11] Patent Number:

5,796,363

[45] Date of Patent:

Aug. 18, 1998

[54] AUTOMATIC POSITION CALCULATING IMAGING RADAR WITH LOW-COST SYNTHETIC APERTURE SENSOR FOR IMAGING LAYERED MEDIA

[75] Inventor: Jeffrey E. Mast, Livermore, Calif.

[73] Assignee: The Regents of the University of California, Oakland, Calif.

[21] Appl. No.: **609,812**

[22] Filed: Mar. 1, 1996

[51] Int. Cl.⁶ G01S 13/89; G01S 13/90

[56] References Cited

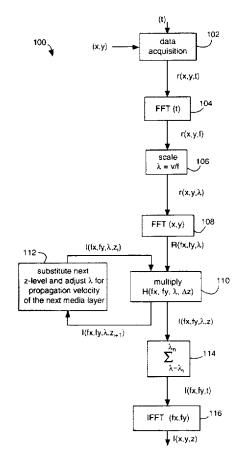
U.S. PATENT DOCUMENTS

5,161,204	11/1992	Hutcheson et al	382/16
5,210,798	5/1993	Ekchian et al	382/14
5,274,714	12/1993	Hutcheson et al	382/15
5,455,590	10/1995	Collins et al	342/179
5,465,308	11/1995	Hutcheson et al	382/159
5,557,283	9/1996	Sheen et al	342/179

OTHER PUBLICATIONS

Jeffrey Edward Mast, "Microwave Pulse-Echo Radar Imaging for the Nondestructive Evaluation of Civil Structures." Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1993.

Primary Examiner—John B. Sotomayor


Attorney, Agent, or Firm—Henry P. Sartorio; Richard B. Main

[57]

ABSTRACT

An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x.y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

8 Claims, 6 Drawing Sheets

